
10 Pasch Geometries

Definition (Pasch’s Postulate (PP))
A metric geometry satisfies Pasch’s Postulate (PP) if for any line `, any triangle 4ABC, and any

point D ∈ ` such that A−D −B, then either `∩AC , ∅ or `∩BC , ∅.

Theorem (Pasch’s Theorem) If a metric geometry satisfies PSA then it also satisfies PP.

1. Prove the above theorem.

Definition (Pasch Geometry)
A Pasch Geometry is a metric geometry which satisfies PSA.

Theorem Let {S ,L,d} be a metric geometry which satisfies PP. If A, B, C are noncollinear and if the
line ` does not contain any of the points A, B, C, then ` cannot intersect all three sides of 4ABC.

2. Prove the above theorem.

Theorem If a metric geometry satisfies PP then it also satisfies PSA.

3. Prove the above theorem.

4. (Peano’s Axiom) Given a triangle 4ABC in a metric geometry which satisfies PSA and points

D, E with B−C −D and A−E −C, prove there is a point F ∈←→DE with A−F −B, and D −E −F.

5. Given 4ABC in a metric geometry which satisfies PSA and points D, F with B−C −D,

A−F −B, prove there exists E ∈←→DF with A−E −C and D −E −F.

6. Given 4ABC and a point P in a metric geometry which satisfies PSA prove there is a line
through P that contains exactly two points of 4ABC.

Definition (Missing Strip Plane)
The Missing Strip Plane is the abstract geometry {S ,L} given by

S = {(x,y) ∈ R2 | x < 0 or 1 ≤ x},
L = {`∩S | ` is a Cartesian line and `∩S , ∅}.

7. Given the following pairs of points: (i) (2,3)
and (3,−1); (ii) (0,3) and (1/2,−2); (iii) (−1,4)
and (2,7). If the given pair of points lies in the
point set of the Missing Strip Plane, find the line
through that pair of points.

8. If lines `1, `2 and `3 in the Missing Strip
plane satisfy:

`1 is parallel to `2 and
`2 is parallel to `3,

is it true that `1 is parallel to `3? Justify your
answer.

9. Given that a metric geometry satisfies PSA
if and only if it is a Pasch geometry, give an
example to show that the Missing Strip Plane
does not satisfy PSA.

10. Let S denote the set of points of the
Missing Strip plane. Find all lines in this plane
through the point (2,0) which are parallel in the
Missing Strip plane to (i) the line L−1 ∩S ; (ii)
the line L1,2 ∩S .

11. Prove that the Missing Strip Plane is an
incidence geometry.

Proposition If {S ,L} is the Missing Strip Plane
and ` = Lm,b then g` : `∩S → R is a bijection
(for definition of g` see lecture notes or in book
on page 79).

12. Prove the above proposition.

Proposition The Missing Strip Plane is not a
Pasch geometry.

13. Prove the above proposition.

14. Let S denote the set of points of the
Missing Strip plane. Find all lines in this plane
through the point (−1,1) which are parallel in
the Missing Strip plane to (i) the line L2∩S ; (ii)
the line L−1,2 ∩S .

15. Given a triangle, 4ABC, in a metric
geometry, and points D, E with A−D −B and

C−E−B, is it always the case that
←→
AE∩

←→
CD , ∅?
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11 Interiors and the Crossbar Theorem

Theorem In a Pasch geometry if A is a non-empty convex set that does not intersect the line `,
then all points of A lie on the same side of `.

1. Prove the above theorem.

Definition (interior of the ray, interior of the segment)

The interior of the ray
−−→
AB in a metric geometry is the set int(

−−→
AB ) =

−−→
AB − {A}. The interior of

the segment AB in a metric geometry is the set int(AB) = AB− {A,B}.

2. Prove that in a metric geometry, int(
−−→
AB )

and int(AB) are convex sets.

Theorem Let A be a line, ray, segment, the
interior of a ray, or the interior of a segment in a
Pasch geometry. If ` is a line with A∩ ` = ∅ then
all of A lies on one side of `. If there is a point B

with A−B−C and
←→
AC ∩ ` = {B} then int(

−−→
BA )

and int(BA) both lie on the same side of ` while

int(
−−→
BA ) and int(

−−→
BC ) lie on opposite sides of `.

3. Prove the above theorem.

Theorem (Z Theorem) In a Pasch geometry, if

P and Q are on opposite sides of the line
←→
AB

then
−−→
BP ∩

−−−→
AQ = ∅. In particular, BP ∩AQ = ∅.

4. Prove the above theorem.

Definition (interior of ]ABC)
In a Pasch geometry the interior of ]ABC, written int(]ABC), is the intersection of the side of

←→
AB that contains C with the side of

←→
BC that contains A.

Theorem In a Pasch geometry, if
]ABC = ]A′B′C′ then
int(]ABC) = int(]A′B′C′).

5. Prove the above theorem.

Theorem In a Pasch geometry, P ∈ int(]ABC) if

and only if A and P are on the same side of
←→
BC

and C and P are on the same side of
←→
BA.

6. Prove the above theorem.

Theorem Given 4ABC in a Pasch geometry, if
A− P −C then P ∈ int(]ABC) and therefore
int(AC) ⊆ int(]ABC).

7. Prove the above theorem.

8. In a Pasch geometry, if P ∈ int(]ABC) prove

int(
−−→
BP ) ⊆ int(]ABC).

Theorem (Crossbar Theorem) In a Pasch

geometry if P ∈ int(]ABC) then
−−→
BP intersects

AC at a unique point F with A−F −C.

9. Prove the above theorem.

Theorem In a Pasch geometry, if CP ∩
←→
AB = ∅

then P ∈ int(]ABC) if and only if A and C are

on opposite sides of
←→
BP .

10. Prove the above theorem.

Theorem In a Pasch geometry, if A−B−D then
P ∈ int(]ABC) if and only if C ∈ int(]DBP ).

11. Prove the above theorem.

Definition (interior of 4ABC)
In a Pasch geometry, the interior of 4ABC, written int(4ABC), is the intersection of the side of

←→
AB which contains C, the side of

←→
BC which contains A, and the side of

←→
CA which contains B.

Theorem In a Pasch geometry int(4ABC) is
convex.

12. Prove the above theorem.

13. In a Pasch geometry, given 4ABC and
points D, E, F such that B−C −D, A−E −C
and B−E −F, prove that F ∈ int(]ACD).

14. In a Pasch geometry, if CP ∩
←→
AB = ∅, prove

that either
−−→
BC =

−−→
BP , or P ∈ int(]ABC), or

C ∈ int(]ABP ).

15. Prove that in a Pasch geometry,
int(]ABC) is convex.
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